Most physical phenomena are described by time-dependent Hamiltonian systems with qualitative features that should be preserved by numerical integrators used for approximating their dynamics. The initial energy of the system together with the energy added or subtracted by the outside forces, represent a conserved quantity of the motion. For a class of time-dependent Hamiltonian systems [8] this invariant can be defined by means of an auxiliary function whose dynamics has to be integrated simultaneously with the system’s equations. We propose splitting procedures featured by a SB3A property that allows to construct composition methods with a reduced number of determining order equations and to provide the same high accuracy for both the dynamics and the preservation of the invariant quantity.

SB3A splitting for approximation of invariants in time-dependent Hamiltonian systems

RAGNI, Stefania
2010

Abstract

Most physical phenomena are described by time-dependent Hamiltonian systems with qualitative features that should be preserved by numerical integrators used for approximating their dynamics. The initial energy of the system together with the energy added or subtracted by the outside forces, represent a conserved quantity of the motion. For a class of time-dependent Hamiltonian systems [8] this invariant can be defined by means of an auxiliary function whose dynamics has to be integrated simultaneously with the system’s equations. We propose splitting procedures featured by a SB3A property that allows to construct composition methods with a reduced number of determining order equations and to provide the same high accuracy for both the dynamics and the preservation of the invariant quantity.
2010
Diele, F; Marangi, C; Ragni, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2336457
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact