In this paper we are interested in the polynomial Krylov approximations for the computation of ϕ(A)v, where A is a square matrix, v represents a given vector, and ϕ is a suitable function which can be employed in modern integrators for differential problems. Our aim consists of proposing and analyzing innovative a posteriori error estimates which allow a good control of the approximation procedure. The effectiveness of the results we provide is tested on some numerical examples of interest.

Error estimates for polynomial Krylov approximations to matrix functions

RAGNI, Stefania
2008

Abstract

In this paper we are interested in the polynomial Krylov approximations for the computation of ϕ(A)v, where A is a square matrix, v represents a given vector, and ϕ is a suitable function which can be employed in modern integrators for differential problems. Our aim consists of proposing and analyzing innovative a posteriori error estimates which allow a good control of the approximation procedure. The effectiveness of the results we provide is tested on some numerical examples of interest.
2008
Diele, F; Moret, I; Ragni, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2336454
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact