The aim of this paper is to analyze efficient numerical methods for time integration of European option pricing models. When spatial discretization is adopted, the resulting problem consists of an ordinary differential equation that can be approximated by means of exponential Runge–Kutta integrators, where the matrix-valued functions are computed by the so-called shift-and-invert Krylov method. To our knowledge, the use of this numerical approach is innovative in the framework of option pricing, and it reveals to be very attractive and efficient to solve the problem at hand. In this respect, we propose some a posteriori estimates for the error in the shift-and-invert approximation of the core-functions arising in exponential integrators. The effectiveness of these error bounds is tested on several examples of interest. They can be adopted as a convenient stopping criterion for implementing the exponential Runge–Kutta algorithm in order to perform time integration.
Rational Krylov methods in exponential integrators for European option pricing
RAGNI, Stefania
2014
Abstract
The aim of this paper is to analyze efficient numerical methods for time integration of European option pricing models. When spatial discretization is adopted, the resulting problem consists of an ordinary differential equation that can be approximated by means of exponential Runge–Kutta integrators, where the matrix-valued functions are computed by the so-called shift-and-invert Krylov method. To our knowledge, the use of this numerical approach is innovative in the framework of option pricing, and it reveals to be very attractive and efficient to solve the problem at hand. In this respect, we propose some a posteriori estimates for the error in the shift-and-invert approximation of the core-functions arising in exponential integrators. The effectiveness of these error bounds is tested on several examples of interest. They can be adopted as a convenient stopping criterion for implementing the exponential Runge–Kutta algorithm in order to perform time integration.File | Dimensione | Formato | |
---|---|---|---|
ragni_NLA_final.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.