We investigate the frequency comb spectrum produced in an optical fiber via multiple four-wave mixing pumped in the normal group-velocity region close to the zero-dispersion wavelength. We show that the dynamics are strongly affected by shock formation. In this regime, the resonant radiation emitted by the shock waves correctly explains the enhanced spectral peaks in the comb. The resonant frequencies found by means of perturbation theory accurately fit those observed from the numerical simulation based on the generalized nonlinear Schrödinger equation.
Radiative effects driven by shock waves in cavity-less four-wave mixing combs
TRILLO, StefanoUltimo
2014
Abstract
We investigate the frequency comb spectrum produced in an optical fiber via multiple four-wave mixing pumped in the normal group-velocity region close to the zero-dispersion wavelength. We show that the dynamics are strongly affected by shock formation. In this regime, the resonant radiation emitted by the shock waves correctly explains the enhanced spectral peaks in the comb. The resonant frequencies found by means of perturbation theory accurately fit those observed from the numerical simulation based on the generalized nonlinear Schrödinger equation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ol-39-19-5760.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
534.19 kB
Formato
Adobe PDF
|
534.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.