The synthesis of a new layered cathode material, Na 0.5 [Ni 0.23 Fe 0.13 Mn 0.63 ]O 2 , and its characterization in terms of crystalline structure and electrochemical performance in a sodium cell is reported. X-ray diffraction studies and high resolution scanning electron microscopy images reveal a well-defi ned P2-type layered structure, while the electrochemical tests demonstrate excellent characteristics in terms of high capacity and cycle life. This performance, the low cost, and the environmental compatibility of its component poses Na 0.5 [Ni 0.23 Fe 0.13 Mn 0.63 ]O 2 to be among the most promising materials for the next generation of sodium-ion batteries.

High Performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 Cathode for Sodium-Ion Batteries

HASSOUN, Jusef
2014

Abstract

The synthesis of a new layered cathode material, Na 0.5 [Ni 0.23 Fe 0.13 Mn 0.63 ]O 2 , and its characterization in terms of crystalline structure and electrochemical performance in a sodium cell is reported. X-ray diffraction studies and high resolution scanning electron microscopy images reveal a well-defi ned P2-type layered structure, while the electrochemical tests demonstrate excellent characteristics in terms of high capacity and cycle life. This performance, the low cost, and the environmental compatibility of its component poses Na 0.5 [Ni 0.23 Fe 0.13 Mn 0.63 ]O 2 to be among the most promising materials for the next generation of sodium-ion batteries.
2014
Hasa, Ivana; Buchholz, Daniel; Passerini, Stefano; Scrosati, Bruno; Hassoun, Jusef
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2334031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 205
  • ???jsp.display-item.citation.isi??? 209
social impact