Given an open and bounded set $\Omega\subset\mathbb{R}^N$, we consider the problem of minimizing the ratio between the $s-$perimeter and the $N-$dimensional Lebesgue measure among subsets of $\Omega$. This is the nonlocal version of the well-known {\it Cheeger problem}. We prove various properties of optimal sets for this problem, as well as some equivalent formulations. In addition, the limiting behaviour of some nonlinear and nonlocal eigenvalue problems is investigated, in relation with this optimization problem. The presentation is as self-contained as possible.

The fractional Cheeger problem

BRASCO, Lorenzo;
2014

Abstract

Given an open and bounded set $\Omega\subset\mathbb{R}^N$, we consider the problem of minimizing the ratio between the $s-$perimeter and the $N-$dimensional Lebesgue measure among subsets of $\Omega$. This is the nonlocal version of the well-known {\it Cheeger problem}. We prove various properties of optimal sets for this problem, as well as some equivalent formulations. In addition, the limiting behaviour of some nonlinear and nonlocal eigenvalue problems is investigated, in relation with this optimization problem. The presentation is as self-contained as possible.
2014
Brasco, Lorenzo; Lindgren, E; Parini, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2333302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 106
social impact