Motivated by applications to congested optimal transport problems, we prove higher integrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide range of degeneracy. The model case we have in mind is the following: ∂x(|ux|-δ1)+q-1ux|ux|+∂y(|uy|-δ2)+q-1uy|uy|=f, for 2≤q<∞ and some non-negative parameters δ1,δ2. Here (·)+ stands for the positive part. We prove that if f∈L loc ∞, then ∇u∈L loc r for every r ≥ 1.
Motivated by applications to congested optimal transport problems, we prove higher integrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide range of degeneracy. The model case we have in mind is the following:partial derivative(x) [(vertical bar u(x)vertical bar - delta(1))(+)(q-1) u(x)/vertical bar u(x vertical bar)] + partial derivative(y) [(vertical bar u(y)vertical bar - delta(2))(+)(q-1) u(y)/vertical bar u(y vertical bar)] = f,for 2 <= q < infinity and non-negative delta(1), delta(2). Here (center dot)(+) stands for the positive part. We prove that if f is an element of L-loc(infinity), then del(u) is an element of L-loc(r) for every r >= 1.
On certain anisotropic elliptic equations arising in congested optimal transport: Local gradient bounds
BRASCO, LorenzoCo-primo
;
2014
Abstract
Motivated by applications to congested optimal transport problems, we prove higher integrability results for the gradient of solutions to some anisotropic elliptic equations, exhibiting a wide range of degeneracy. The model case we have in mind is the following:partial derivative(x) [(vertical bar u(x)vertical bar - delta(1))(+)(q-1) u(x)/vertical bar u(x vertical bar)] + partial derivative(y) [(vertical bar u(y)vertical bar - delta(2))(+)(q-1) u(y)/vertical bar u(y vertical bar)] = f,for 2 <= q < infinity and non-negative delta(1), delta(2). Here (center dot)(+) stands for the positive part. We prove that if f is an element of L-loc(infinity), then del(u) is an element of L-loc(r) for every r >= 1.File | Dimensione | Formato | |
---|---|---|---|
bracar_rev.pdf
solo gestori archivio
Descrizione: Proof
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
370.82 kB
Formato
Adobe PDF
|
370.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
bracar.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
400.71 kB
Formato
Adobe PDF
|
400.71 kB | Adobe PDF | Visualizza/Apri |
acv-2013-0007.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
325.63 kB
Formato
Adobe PDF
|
325.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.