We study the Stekloff eigenvalue problem for the so-called pseudo $p-$Laplacian operator. After proving the existence of an unbounded sequence of eigenvalues, we focus on the first nontrivial eigenvalue $\sigma_{2,p}$, providing various equivalent characterizations for it. We also prove an upper bound for $\sigma_{2,p}$ in terms of geometric quantities. The latter can be seen as the nonlinear analogue of the Brock-Weinstock inequality for the first nontrivial Stekloff eigenvalue of the (standard) Laplacian. Such an estimate is obtained by exploiting a family of sharp weighted Wulff inequalities, which are here derived and appear to be interesting in themselves.

An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities

BRASCO, Lorenzo;
2013

Abstract

We study the Stekloff eigenvalue problem for the so-called pseudo $p-$Laplacian operator. After proving the existence of an unbounded sequence of eigenvalues, we focus on the first nontrivial eigenvalue $\sigma_{2,p}$, providing various equivalent characterizations for it. We also prove an upper bound for $\sigma_{2,p}$ in terms of geometric quantities. The latter can be seen as the nonlinear analogue of the Brock-Weinstock inequality for the first nontrivial Stekloff eigenvalue of the (standard) Laplacian. Such an estimate is obtained by exploiting a family of sharp weighted Wulff inequalities, which are here derived and appear to be interesting in themselves.
2013
Brasco, Lorenzo; Franzina, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2333297
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 25
social impact