Given an open set $\Omega$, we consider the problem of providing sharp lower bounds for $\lambda_2(\Omega)$, i.e. its second Dirichlet eigenvalue of the $p-$Laplace operator. After presenting the nonlinear analogue of the {\it Hong-Krahn-Szego inequality}, asserting that the disjoint unions of two equal balls minimize $\lambda_2$ among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases $p=1$ and $p=\infty$ are considered as well.

On the Hong-Krahn-Szego inequality for the $p-$Laplace operator

BRASCO, Lorenzo;
2013

Abstract

Given an open set $\Omega$, we consider the problem of providing sharp lower bounds for $\lambda_2(\Omega)$, i.e. its second Dirichlet eigenvalue of the $p-$Laplace operator. After presenting the nonlinear analogue of the {\it Hong-Krahn-Szego inequality}, asserting that the disjoint unions of two equal balls minimize $\lambda_2$ among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases $p=1$ and $p=\infty$ are considered as well.
2013
Brasco, Lorenzo; Franzina, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2333294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact