Denoting by $\E\subseteq \R^2$ the set of the pairs $\big(\lambda_1(\Omega),\,\lambda_2(\Omega)\big)$ for all the open sets $\Omega\subseteq\R^N$ with unit measure, and by $\Theta\subseteq\R^N$ the union of two disjoint balls of half measure, we give an elementary proof of the fact that $\partial\E$ has horizontal tangent at its lowest point $\big(\lambda_1(\Theta),\,\lambda_2(\Theta)\big)$.

On the boundary of the attainable set of the Dirichlet spectrum

BRASCO, Lorenzo;
2013

Abstract

Denoting by $\E\subseteq \R^2$ the set of the pairs $\big(\lambda_1(\Omega),\,\lambda_2(\Omega)\big)$ for all the open sets $\Omega\subseteq\R^N$ with unit measure, and by $\Theta\subseteq\R^N$ the union of two disjoint balls of half measure, we give an elementary proof of the fact that $\partial\E$ has horizontal tangent at its lowest point $\big(\lambda_1(\Theta),\,\lambda_2(\Theta)\big)$.
2013
Brasco, Lorenzo; Nitsch, C; Pratelli, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2333293
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact