The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet-Laplacian among sets with given volume. In this paper we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and Bhattacharya-Weitsman. More generally, the result applies to every optimal Poincar'e-Sobolev constant for the embeddings $W^{1,2}_0(Omega)hookrightarrow L^q(Omega)$.
Faber-Krahn inequalities in sharp quantitative form
BRASCO, Lorenzo;
2015
Abstract
The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet-Laplacian among sets with given volume. In this paper we prove a sharp quantitative enhancement of this result, thus confirming a conjecture by Nadirashvili and Bhattacharya-Weitsman. More generally, the result applies to every optimal Poincar'e-Sobolev constant for the embeddings $W^{1,2}_0(Omega)hookrightarrow L^q(Omega)$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
fkstability_final_rev.pdf
accesso aperto
Descrizione: Pre print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri |
bradepvel_DMJ.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
572.59 kB
Formato
Adobe PDF
|
572.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.