One of the main requirements in wireless sensor operation is the availability of autonomous power sources sufficiently compact to be embedded in the same housing and, when the application involves living people, wearable. A possible technological solution satisfying these needs is energy harvesting from the environment. Vibration energy scavenging is one of the most studied approaches in this frame. In this work the conversion of kinetic into electric energy via piezoelectric coupling in resonant beams is studied. Various design approaches are analyzed and relevant parameters are identified. Numerical methods are applied to stress and strain analyses as well as to evaluate the voltage and charge generated by electromechanical coupling. The aim of the work is increasing the specific power generated per unit of scavenger volume by optimizing its shape. Besides the conventional rectangular geometry proposed in literature, two trapezoidal shapes, namely the direct and the reversed trapezoidal configuration, are analyzed. They are modeled to predict their dynamic behavior and energy conversion performance. Analytical and FEM models are compared and resulting figures of merit are drawn. Results of a preliminary experimental validation are also given. A systematic validation of characteristic specimens via an experimental campaign is ongoing. © 2009 SPIE.
Analytical characterization and experimental validation of performances of piezoelectric vibration energy scavengers
BENASCIUTTI, Denis
2009
Abstract
One of the main requirements in wireless sensor operation is the availability of autonomous power sources sufficiently compact to be embedded in the same housing and, when the application involves living people, wearable. A possible technological solution satisfying these needs is energy harvesting from the environment. Vibration energy scavenging is one of the most studied approaches in this frame. In this work the conversion of kinetic into electric energy via piezoelectric coupling in resonant beams is studied. Various design approaches are analyzed and relevant parameters are identified. Numerical methods are applied to stress and strain analyses as well as to evaluate the voltage and charge generated by electromechanical coupling. The aim of the work is increasing the specific power generated per unit of scavenger volume by optimizing its shape. Besides the conventional rectangular geometry proposed in literature, two trapezoidal shapes, namely the direct and the reversed trapezoidal configuration, are analyzed. They are modeled to predict their dynamic behavior and energy conversion performance. Analytical and FEM models are compared and resulting figures of merit are drawn. Results of a preliminary experimental validation are also given. A systematic validation of characteristic specimens via an experimental campaign is ongoing. © 2009 SPIE.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.