Glioblastoma multiforme (GBM) is an aggressive brain cancer for which there is no effective treatment. Oncolytic HSV vectors (oHSVs) are attenuated lytic viruses that have shown promise in the treatment of human GBM models in animals, but their efficacy in early phase patient trials has been limited. Instead of attenuating the virus with mutations in virulence genes, we engineered four copies of the recognition sequence for miR-124 into the 3'UTR of the essential ICP4 gene to protect healthy tissue against lytic virus replication; miR-124 is expressed in neurons but not in glioblastoma cells. Following intracranial inoculation into nude mice, the miR-124-sensitive vector failed to replicate or show overt signs of pathogenesis. To address the concern that this safety feature may reduce oncolytic activity, we inserted the miR-124 response elements into an unattenuated, human receptor (EGFR/EGFRvIII)-specific HSV vector. We found that miR-124 sensitivity did not cause a loss of treatment efficiency in an orthotopic model of primary human GBM in nude mice. These results demonstrate that engineered miR-124 responsiveness can eliminate off-target replication by unattenuated oHSV without compromising oncolytic activity, thereby providing increased safety.

Use of miRNA Response Sequences to Block Off-target Replication and Increase the Safety of an Unattenuated, Glioblastoma-targeted Oncolytic HSV.

GRANDI, Paola
2015

Abstract

Glioblastoma multiforme (GBM) is an aggressive brain cancer for which there is no effective treatment. Oncolytic HSV vectors (oHSVs) are attenuated lytic viruses that have shown promise in the treatment of human GBM models in animals, but their efficacy in early phase patient trials has been limited. Instead of attenuating the virus with mutations in virulence genes, we engineered four copies of the recognition sequence for miR-124 into the 3'UTR of the essential ICP4 gene to protect healthy tissue against lytic virus replication; miR-124 is expressed in neurons but not in glioblastoma cells. Following intracranial inoculation into nude mice, the miR-124-sensitive vector failed to replicate or show overt signs of pathogenesis. To address the concern that this safety feature may reduce oncolytic activity, we inserted the miR-124 response elements into an unattenuated, human receptor (EGFR/EGFRvIII)-specific HSV vector. We found that miR-124 sensitivity did not cause a loss of treatment efficiency in an orthotopic model of primary human GBM in nude mice. These results demonstrate that engineered miR-124 responsiveness can eliminate off-target replication by unattenuated oHSV without compromising oncolytic activity, thereby providing increased safety.
2015
Mazzacurati, L; Marzulli, M; Reinhart, B; Miyagawa, Y; Uchida, H; Goins, Wf; Li, A; Kaur, B; Caligiuri, M; Cripe, T; Chiocca, N; Amankulor, N; Cohen, ...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2298422
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 65
social impact