We perform an analysis of the diffuse low-frequency Galactic components in the southern part of the Gould Belt system (130 degrees <= l <= 230 degrees and -50 degrees <= b <= -10 degrees). Strong ultra-violet flux coming from the Gould Belt super-association is responsible for bright diffuse foregrounds that we observe from our position inside the system and that can help us improve our knowledge of the Galactic emission. Free-free emission and anomalous microwave emission (AME) are the dominant components at low frequencies (nu < 40 GHz), while synchrotron emission is very smooth and faint. We separated diffuse free-free emission and AME from synchrotron emission and thermal dust emission by using Planck data, complemented by ancillary data, using the correlated component analysis (CCA) component-separation method and we compared our results with the results of cross-correlation of foreground templates with the frequency maps. We estimated the electron temperature T-e from Ha and free-free emission using two methods (temperature-temperature plot and cross-correlation) and obtained T-e ranging from 3100 to 5200 K for an effective fraction of absorbing dust along the line of sight of 30% (f(d) = 0.3). We estimated the frequency spectrum of the diffuse AME and recovered a peak frequency (in flux density units) of 25.5 +/- 1.5 GHz. We verified the reliability of this result with realistic simulations that include biases in the spectral model for the AME and in the free-free template. By combining physical models for vibrational and rotational dust emission and adding the constraints from the thermal dust spectrum from Planck and IRAS, we are able to present a good description of the AME frequency spectrum for plausible values of the local density and radiation field.

Planck intermediate results. XII: Diffuse Galactic components in the Gould Belt system

NATOLI, Paolo;
2013

Abstract

We perform an analysis of the diffuse low-frequency Galactic components in the southern part of the Gould Belt system (130 degrees <= l <= 230 degrees and -50 degrees <= b <= -10 degrees). Strong ultra-violet flux coming from the Gould Belt super-association is responsible for bright diffuse foregrounds that we observe from our position inside the system and that can help us improve our knowledge of the Galactic emission. Free-free emission and anomalous microwave emission (AME) are the dominant components at low frequencies (nu < 40 GHz), while synchrotron emission is very smooth and faint. We separated diffuse free-free emission and AME from synchrotron emission and thermal dust emission by using Planck data, complemented by ancillary data, using the correlated component analysis (CCA) component-separation method and we compared our results with the results of cross-correlation of foreground templates with the frequency maps. We estimated the electron temperature T-e from Ha and free-free emission using two methods (temperature-temperature plot and cross-correlation) and obtained T-e ranging from 3100 to 5200 K for an effective fraction of absorbing dust along the line of sight of 30% (f(d) = 0.3). We estimated the frequency spectrum of the diffuse AME and recovered a peak frequency (in flux density units) of 25.5 +/- 1.5 GHz. We verified the reliability of this result with realistic simulations that include biases in the spectral model for the AME and in the free-free template. By combining physical models for vibrational and rotational dust emission and adding the constraints from the thermal dust spectrum from Planck and IRAS, we are able to present a good description of the AME frequency spectrum for plausible values of the local density and radiation field.
2013
P. A., R.; N., Aghanim; M. I., R.; M., Arnaud; M., Ashdown; F., Atrio Barandela; J., Aumont; C., Baccigalupi; A., Balbi; A. J., Banday; R. B., Barreir...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2284436
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 9
social impact