The high-pressure behaviour of the thaumasite structure was investigated using synchrotron powder X-ray diffraction, up to 19.5 GPa. Based on Rietveld refinements, thaumasite retained the room-pressure P63 space group throughout the whole investigated pressure range while the pressure dependence of the refined unit-cell parameters can be cast into three different compression regimes, each corresponding to a different thaumasite phase (th-I, th-II and th-III) related by isosymmetric phase transitions. In particular, the phase transition in the 7.40-15.02 GPa P-range (i.e. from th-II to th-III) is associated with an inversion of the axial bulk moduli which, by analogy with ettringite, can be rationalized as due to a change in the relative strengths of the iono-covalent bonds along the [Ca3Si(OH)6(H2O)12]4+ columns parallel to the c axis vs. the O-H bonds linking the columns within the ab plane. The linear inverse relationship between the low- and high-temperature data from the literature with those collected under high-pressure conditions reveals that the same bonding regime governs the anisotropic expansion and contraction of thaumasite up to ~1.4 GPa and 400 K (HP-HT stability limits of th-I phase).
Phase transitions during compression of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H 2 O: A high-pressure synchrotron powder X-ray diffraction study
ARDIT, Matteo;CRUCIANI, Giuseppe;
2014
Abstract
The high-pressure behaviour of the thaumasite structure was investigated using synchrotron powder X-ray diffraction, up to 19.5 GPa. Based on Rietveld refinements, thaumasite retained the room-pressure P63 space group throughout the whole investigated pressure range while the pressure dependence of the refined unit-cell parameters can be cast into three different compression regimes, each corresponding to a different thaumasite phase (th-I, th-II and th-III) related by isosymmetric phase transitions. In particular, the phase transition in the 7.40-15.02 GPa P-range (i.e. from th-II to th-III) is associated with an inversion of the axial bulk moduli which, by analogy with ettringite, can be rationalized as due to a change in the relative strengths of the iono-covalent bonds along the [Ca3Si(OH)6(H2O)12]4+ columns parallel to the c axis vs. the O-H bonds linking the columns within the ab plane. The linear inverse relationship between the low- and high-temperature data from the literature with those collected under high-pressure conditions reveals that the same bonding regime governs the anisotropic expansion and contraction of thaumasite up to ~1.4 GPa and 400 K (HP-HT stability limits of th-I phase).I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.