To focus hard X- and γ-rays it is possible to use a Laue lens as a concentrator. With this optics it is possible to improve the detection of radiation for several applications, from the observation of the most violent phenomena in the sky to nuclear medicine applications for diagnostic and therapeutic purposes. We implemented a code named LaueGen, which is based on a genetic algorithm and aims to design optimized Laue lenses. The genetic algorithm was selected because optimizing a Laue lens is a complex and discretized problem. The output of the code consists of the design of a Laue lens, which is composed of diffracting crystals that are selected and arranged in such a way as to maximize the lens performance. The code allows managing crystals of any material and crystallographic orientation. The program is structured in such a way that the user can control all the initial lens parameters. As a result, LaueGen is highly versatile and can be used to design very small lenses, for example, for nuclear medicine, or very large lenses, for example, for satellite-borne astrophysical missions.
LaueGen
CAMATTARI, Riccardo;GUIDI, Vincenzo
2014
Abstract
To focus hard X- and γ-rays it is possible to use a Laue lens as a concentrator. With this optics it is possible to improve the detection of radiation for several applications, from the observation of the most violent phenomena in the sky to nuclear medicine applications for diagnostic and therapeutic purposes. We implemented a code named LaueGen, which is based on a genetic algorithm and aims to design optimized Laue lenses. The genetic algorithm was selected because optimizing a Laue lens is a complex and discretized problem. The output of the code consists of the design of a Laue lens, which is composed of diffracting crystals that are selected and arranged in such a way as to maximize the lens performance. The code allows managing crystals of any material and crystallographic orientation. The program is structured in such a way that the user can control all the initial lens parameters. As a result, LaueGen is highly versatile and can be used to design very small lenses, for example, for nuclear medicine, or very large lenses, for example, for satellite-borne astrophysical missions.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.