Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of discrete-velocity schemes which permits to reduce the computational cost from O(N2d + 1) to O(N̅dNd log2N), N̅ ≪ N, with almost no loss of accuracy.
Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation
PARESCHI, Lorenzo;
2013
Abstract
Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N2d + 1) where d is the dimension of the velocity space. In this paper, following the ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math. Comput. 75 (2006) 1833–1852], we derive fast summation techniques for the evaluation of discrete-velocity schemes which permits to reduce the computational cost from O(N2d + 1) to O(N̅dNd log2N), N̅ ≪ N, with almost no loss of accuracy.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.