We study the group Tame(SL 2 ) of tame automorphisms of a smooth affine 3-dimensional quadric, which we can view as the underlying variety of SL 2 (ℂ). We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is CAT(0) and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in Tame(SL 2 ) is linearizable, and that Tame(SL 2 ) satisfies the Tits alternative.

The tame automorphism group of an affine quadric threefold acting on a square complex.

BISI, Cinzia;
2014

Abstract

We study the group Tame(SL 2 ) of tame automorphisms of a smooth affine 3-dimensional quadric, which we can view as the underlying variety of SL 2 (ℂ). We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is CAT(0) and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in Tame(SL 2 ) is linearizable, and that Tame(SL 2 ) satisfies the Tits alternative.
2014
Bisi, Cinzia; J. P., Furter; S., Lamy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2155419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact