The anti-leukemic activity of the mitochondria-targeting small molecule sodium dichloroacetate (DCA), used alone and in association with the small molecule inhibitor of the p53/MDM2 interaction Nutlin-3, was analyzed in primary B-chronic lymphocytic leukemia (B-CLL) samples (n=22), normal peripheral blood cells (n=10) and in p53(wild-type) EHEB, JVM-2, JVM-3 B lymphoblastoid cell lines. DCA exhibited a dose-dependent anti-leukemic activity in both primary B-CLL and B leukemic cell lines with a functional p53 status and showed a synergistic cytotoxic activity when used in combination with Nutlin-3. At the molecular level, DCA positively regulated p53 activity, as documented by post-transcriptional modifications of p53 protein and synergized with Nutlin-3 in increasing the expression of the p53-target genes MDM2, PUMA, TIGAR and in particular p21. The potential role of p21 in mediating the DCA+Nutlin-3 anti-leukemic activity was underscored in knocking-down experiments. Indeed, transfection of leukemic cells with p21 siRNAs significantly decreased the DCA+Nutlin-3-induced cytotoxicity. Taken together, our data emphasize that DCA is a molecule that merits to be further evaluated as a chemotherapeutic agent for B-CLL, likely in combination with other therapeutic compounds
Sodium dichloroacetate exhibits anti-leukemic activity in B-chronic lymphocytic leukemia (B-CLL) and synergizes with the p53 activator Nutlin-3
AGNOLETTO, ChiaraCo-primo
;MELLONI, ElisabettaCo-primo
;CASCIANO, Fabio;RIGOLIN, Gian Matteo;RIMONDI, Erika;Celeghini C;BRUNELLI, Laura;CUNEO, Antonio;SECCHIERO, Paola
Penultimo
;ZAULI, GiorgioUltimo
2014
Abstract
The anti-leukemic activity of the mitochondria-targeting small molecule sodium dichloroacetate (DCA), used alone and in association with the small molecule inhibitor of the p53/MDM2 interaction Nutlin-3, was analyzed in primary B-chronic lymphocytic leukemia (B-CLL) samples (n=22), normal peripheral blood cells (n=10) and in p53(wild-type) EHEB, JVM-2, JVM-3 B lymphoblastoid cell lines. DCA exhibited a dose-dependent anti-leukemic activity in both primary B-CLL and B leukemic cell lines with a functional p53 status and showed a synergistic cytotoxic activity when used in combination with Nutlin-3. At the molecular level, DCA positively regulated p53 activity, as documented by post-transcriptional modifications of p53 protein and synergized with Nutlin-3 in increasing the expression of the p53-target genes MDM2, PUMA, TIGAR and in particular p21. The potential role of p21 in mediating the DCA+Nutlin-3 anti-leukemic activity was underscored in knocking-down experiments. Indeed, transfection of leukemic cells with p21 siRNAs significantly decreased the DCA+Nutlin-3-induced cytotoxicity. Taken together, our data emphasize that DCA is a molecule that merits to be further evaluated as a chemotherapeutic agent for B-CLL, likely in combination with other therapeutic compoundsFile | Dimensione | Formato | |
---|---|---|---|
Agnoletto et al Oncotarget 2014.pdf
accesso aperto
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.