The identifiability of parameters in a probabilistic model isa crucial notion in statistical inference. We prove that a general tensor of rank $8$ in$\CC^3\otimes\CC^6\otimes\CC^6$ has at least $6$ decompositionsas sum of simple tensors, { so it is not $8$-identifiable}. This is the highest known example of balanced tensors of {dimension} $3$, which are not $k$-identifiable,when $k$ is smaller than the generic rank.

One example of general unidentifiable tensors

MELLA, Massimiliano;
2014

Abstract

The identifiability of parameters in a probabilistic model isa crucial notion in statistical inference. We prove that a general tensor of rank $8$ in$\CC^3\otimes\CC^6\otimes\CC^6$ has at least $6$ decompositionsas sum of simple tensors, { so it is not $8$-identifiable}. This is the highest known example of balanced tensors of {dimension} $3$, which are not $k$-identifiable,when $k$ is smaller than the generic rank.
2014
Mella, Massimiliano; G., Ottaviani; L., Chiantini
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2034212
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact