The underlying mechanism in postmenopausal osteoporosis (PO) is an imbalance between bone resorption and formation. This study was conducted to investigate whether oxidative stress (OxS) might have a role in this derangement of bone homeostasis. In a sample of 167 postmenopausal women, we found that increased serum levels of a lipid peroxidation marker, hydroperoxides, were negatively and independently associated with decreased bone mineral density (BMD) in total body (r=-0.192, p<0.05), lumbar spine (r=-0.282, p<0.01) and total hip (r=-0.282, p<0.05), as well as with increased bone resorption rate (r=0.233, p<0.05), as assessed by the serum concentration of C-terminal telopeptide of type I collagen (CTX-1). On the contrary, the OxS marker failed to be correlated with the serum levels of bone-specific alkaline phosphatase (BAP), i.e. elective marker of bone formation. Importantly, multiple regression analysis revealed that hydroperoxides is a determinant factor for the statistical association between lumbar spine BMD and CTX-1 levels. Taken together, our data suggest that OxS might mediate, by enhancing bone resorption, the uncoupling of bone turnover that underlies PO development.
Oxidative Stress and Bone Resorption Interplay as a Possible Trigger for Postmenopausal Osteoporosis
CERVELLATI, Carlo
Primo
;BONACCORSI, GloriaSecondo
;CREMONINI, Eleonora;ROMANI, Arianna;FILA, Enrica;CASTALDINI, Maria Cristina;FERRAZZINI, Stefania;GIGANTI, MelchiorePenultimo
;MASSARI, LeoUltimo
2014
Abstract
The underlying mechanism in postmenopausal osteoporosis (PO) is an imbalance between bone resorption and formation. This study was conducted to investigate whether oxidative stress (OxS) might have a role in this derangement of bone homeostasis. In a sample of 167 postmenopausal women, we found that increased serum levels of a lipid peroxidation marker, hydroperoxides, were negatively and independently associated with decreased bone mineral density (BMD) in total body (r=-0.192, p<0.05), lumbar spine (r=-0.282, p<0.01) and total hip (r=-0.282, p<0.05), as well as with increased bone resorption rate (r=0.233, p<0.05), as assessed by the serum concentration of C-terminal telopeptide of type I collagen (CTX-1). On the contrary, the OxS marker failed to be correlated with the serum levels of bone-specific alkaline phosphatase (BAP), i.e. elective marker of bone formation. Importantly, multiple regression analysis revealed that hydroperoxides is a determinant factor for the statistical association between lumbar spine BMD and CTX-1 levels. Taken together, our data suggest that OxS might mediate, by enhancing bone resorption, the uncoupling of bone turnover that underlies PO development.File | Dimensione | Formato | |
---|---|---|---|
569563.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.