If n is an odd perfect number with Euler's prime q, we show that if 3 | n and q ≤148 207 (resp. if 3 | n and q ≤ 223), then -√n > rad(n). We also show the non-existence of odd perfect numbers of certain forms.
A remark on the radical of odd perfect numbers
ELLIA, Filippo Alfredo
2012
Abstract
If n is an odd perfect number with Euler's prime q, we show that if 3 | n and q ≤148 207 (resp. if 3 | n and q ≤ 223), then -√n > rad(n). We also show the non-existence of odd perfect numbers of certain forms.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


