We study the quasi-projective variety Bird of plane Cremona transformations defined by three polynomials of fixed degree d and its subvariety Bir◦d where the three polynomials have no common factor. We compute their dimension and the decomposition in irreducible components. We prove that Bird is connected for each d and Bir◦d is connected when d <7.

On Plane Cremona Transformations of fixed degree

BISI, Cinzia
;
CALABRI, Alberto;MELLA, Massimiliano
2015

Abstract

We study the quasi-projective variety Bird of plane Cremona transformations defined by three polynomials of fixed degree d and its subvariety Bir◦d where the three polynomials have no common factor. We compute their dimension and the decomposition in irreducible components. We prove that Bird is connected for each d and Bir◦d is connected when d <7.
2015
Bisi, Cinzia; Calabri, Alberto; Mella, Massimiliano
File in questo prodotto:
File Dimensione Formato  
2015_JGA_Bisi Calabri Mella_s12220-013-9459-9.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 422.12 kB
Formato Adobe PDF
422.12 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1871743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact