The green microalga Neochloris oleoabundans is able to grow in both low and high salinity media and is largely studied for its capability to accumulate lipids under starvation. Moreover, N. oleoabundans is a mixotrophic alga, and then organic carbon addition can promote its growth. This research aims to study the morpho-physiological aspects, with a particular attention on the photosynthetic response, both during mixotrophic growth and starvation in brackish media, more sustainable than freshwater cultivation. In the first step, the alga was cultivated mixotrophically in a brackish medium added with an apple waste product; in the second one, cells were starved also to verify lipid induction. Results indicate that growth is highly promoted during the first week of mixotrophic cultivation, while photosynthetic pigments and lipids are overproduced during the following three weeks of cultivation. In parallel, in mixotrophic cultures the maximum PSII quantum yield was enhanced during the exponential phase of growth. Interesting changes affected the mixotrophic cultures with respect to the partitioning of absorbed light energy. Starvation of both 7-day-grown mixotrophic and autotrophic cultures caused growth inhibition, pigments and photosynthesis downshifting, and concomitantly promoted evident lipid synthesis.
Growth, morphology and photosynthetic responses of Neochloris oleoabundans during cultivation in a mixotrophic brackish medium and subsequent starvation
BALDISSEROTTO, Costanza;GIOVANARDI, Martina;FERRONI, Lorenzo;PANCALDI, Simonetta
2014
Abstract
The green microalga Neochloris oleoabundans is able to grow in both low and high salinity media and is largely studied for its capability to accumulate lipids under starvation. Moreover, N. oleoabundans is a mixotrophic alga, and then organic carbon addition can promote its growth. This research aims to study the morpho-physiological aspects, with a particular attention on the photosynthetic response, both during mixotrophic growth and starvation in brackish media, more sustainable than freshwater cultivation. In the first step, the alga was cultivated mixotrophically in a brackish medium added with an apple waste product; in the second one, cells were starved also to verify lipid induction. Results indicate that growth is highly promoted during the first week of mixotrophic cultivation, while photosynthetic pigments and lipids are overproduced during the following three weeks of cultivation. In parallel, in mixotrophic cultures the maximum PSII quantum yield was enhanced during the exponential phase of growth. Interesting changes affected the mixotrophic cultures with respect to the partitioning of absorbed light energy. Starvation of both 7-day-grown mixotrophic and autotrophic cultures caused growth inhibition, pigments and photosynthesis downshifting, and concomitantly promoted evident lipid synthesis.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.