Recently Andrews introduced the concept of signed partition: a {it signed partition} is a finite sequence of integers $a_k , dots , a_1,a_{-1} ,dots , a_{-l} $ such that $a_k ge dots ge a_1 > 0 > a_{-1} ge dots ge a_{-l} $. So far the signed partitions have been studied from an arithmetical point of view. In this paper we first generalize the concept of signed partition and we next use such a generalization to introduce a partial order on the set of all the signed partitions. Furthermore, we show that this order has many remarkable properties and that it generalizes the classical order on the Young lattice.

A natural extension of the Young partition lattice

BISI, Cinzia;
2015

Abstract

Recently Andrews introduced the concept of signed partition: a {it signed partition} is a finite sequence of integers $a_k , dots , a_1,a_{-1} ,dots , a_{-l} $ such that $a_k ge dots ge a_1 > 0 > a_{-1} ge dots ge a_{-l} $. So far the signed partitions have been studied from an arithmetical point of view. In this paper we first generalize the concept of signed partition and we next use such a generalization to introduce a partial order on the set of all the signed partitions. Furthermore, we show that this order has many remarkable properties and that it generalizes the classical order on the Young lattice.
2015
Bisi, Cinzia; G., Chiaselotti; G., Marino; P. A., Oliverio
File in questo prodotto:
File Dimensione Formato  
advgeom2final.print.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 590.32 kB
Formato Adobe PDF
590.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1865316
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact