The Luria-Delbrück mutation model has a long history and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using some mathematical tools from nonlinear statistical physics. Starting from the classical formulations we derive the corresponding differential models and show that under a suitable mean field scaling they correspond to generalized Fokker-Planck equations for the mutants distribution whose solutions are given by the corresponding Luria-Delbrück distribution. Numerical results confirming the theoretical analysis are also presented. © 2012 Elsevier Inc.
Mean field mutation dynamics and the continuous Luria-Delbrück distribution
PARESCHI, Lorenzo
2012
Abstract
The Luria-Delbrück mutation model has a long history and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using some mathematical tools from nonlinear statistical physics. Starting from the classical formulations we derive the corresponding differential models and show that under a suitable mean field scaling they correspond to generalized Fokker-Planck equations for the mutants distribution whose solutions are given by the corresponding Luria-Delbrück distribution. Numerical results confirming the theoretical analysis are also presented. © 2012 Elsevier Inc.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.