Background: Grade IV chemotherapy toxicity is defined as absolute neutrophil count <500/μL. The nadir is considered as the lowest neutrophil number following chemotherapy, and generally is not expected before the 7th day from the start of chemotherapy. The usual prophylactic dose of rHu-G-CSF (Filgrastim) is 300 μg/day, starting 24-48 h after chemotherapy until hematological recovery. However, individual patient response is largely variable, so that rHu-G-CSF doses can be different. The aim of this study was to verify if peripheral blood automated flow cytochemistry and flow cytometry analysis may be helpful in predicting the individual response and saving rHu-G-CSF. Methods: During Grade IV neutropenia, blood counts from 30 cancer patients were analyzed daily by ADVIA 120 automated flow cytochemistry analyzer and by Facscalibur flow cytometer till the nadir. "Large unstained cells" (LUCs), myeloperoxidase index (MPXI), blasts, and various cell subpopulations in the peripheral blood were studied. At nadir rHu-G-CSF was started and 81 chemotherapy cycles were analyzed. Cycles were stratified according to their number and to two dose-levels of rHuG-CSF needed to recovery (300-600 vs. 900-1200 μg) and analyzed in relation to mean values of MPXI and mean absolute number of LUCs in the nadir phase. The linear regressions of LUCs % over time in relation to two dose-levels of rHu-G-CSF and uni-multivariate analysis of lymphocyte subpopulations, CD34+ cells, MPXI, and blasts were also performed. Results: In the nadir phase, the increase of MPXI above the upper limit of normality (>10; median 27.7), characterized a slow hematological recovery. MPXI levels were directly related to the cycle number and inversely related to the absolute number of LUCs and CD34 +/CD45+ cells. A faster hematological recovery was associated with a higher LUC increase per day (0.56% vs. 0.25%), higher blast (median 36.7/μL vs. 19.5/μL) and CD34+/CD45+ cell (median 2.2/μL vs. 0.82/μL) counts. Conclusions: Our study showed that some biological indicators such as MPXI, LUCs, blasts, and CD34 +/CD45+ cells may be of clinical relevance in predicting individual hematological response to rHu-G-CSF. Special attention should be paid when nadir MPXI exceeds the upper limit of normality because the hematological recovery may be delayed. © 2009 Clinical Cytometry Society.
Predictive value of hematological and phenotypical parameters on postchemotherapy leukocyte recovery
Lanza F;Abbasciano V;CAMPIONI, Diana;
2009
Abstract
Background: Grade IV chemotherapy toxicity is defined as absolute neutrophil count <500/μL. The nadir is considered as the lowest neutrophil number following chemotherapy, and generally is not expected before the 7th day from the start of chemotherapy. The usual prophylactic dose of rHu-G-CSF (Filgrastim) is 300 μg/day, starting 24-48 h after chemotherapy until hematological recovery. However, individual patient response is largely variable, so that rHu-G-CSF doses can be different. The aim of this study was to verify if peripheral blood automated flow cytochemistry and flow cytometry analysis may be helpful in predicting the individual response and saving rHu-G-CSF. Methods: During Grade IV neutropenia, blood counts from 30 cancer patients were analyzed daily by ADVIA 120 automated flow cytochemistry analyzer and by Facscalibur flow cytometer till the nadir. "Large unstained cells" (LUCs), myeloperoxidase index (MPXI), blasts, and various cell subpopulations in the peripheral blood were studied. At nadir rHu-G-CSF was started and 81 chemotherapy cycles were analyzed. Cycles were stratified according to their number and to two dose-levels of rHuG-CSF needed to recovery (300-600 vs. 900-1200 μg) and analyzed in relation to mean values of MPXI and mean absolute number of LUCs in the nadir phase. The linear regressions of LUCs % over time in relation to two dose-levels of rHu-G-CSF and uni-multivariate analysis of lymphocyte subpopulations, CD34+ cells, MPXI, and blasts were also performed. Results: In the nadir phase, the increase of MPXI above the upper limit of normality (>10; median 27.7), characterized a slow hematological recovery. MPXI levels were directly related to the cycle number and inversely related to the absolute number of LUCs and CD34 +/CD45+ cells. A faster hematological recovery was associated with a higher LUC increase per day (0.56% vs. 0.25%), higher blast (median 36.7/μL vs. 19.5/μL) and CD34+/CD45+ cell (median 2.2/μL vs. 0.82/μL) counts. Conclusions: Our study showed that some biological indicators such as MPXI, LUCs, blasts, and CD34 +/CD45+ cells may be of clinical relevance in predicting individual hematological response to rHu-G-CSF. Special attention should be paid when nadir MPXI exceeds the upper limit of normality because the hematological recovery may be delayed. © 2009 Clinical Cytometry Society.File | Dimensione | Formato | |
---|---|---|---|
LUC cytometry 2009.pdf
accesso aperto
Tipologia:
Full text (versione editoriale)
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
124.1 kB
Formato
Adobe PDF
|
124.1 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.