The celebrated Schwarz-Pick lemma for the complex unit disk is the basis for the study of hyperbolic geometry in one and in several complex variables. In the present paper, we turn our attention to the quaternionic unit ball $\B$. We prove a version of the Schwarz-Pick lemma for self-maps of $\B$ that are slice regular, according to the definition of Gentili and Struppa. The lemma has interesting applications in the fixed-point case, and it generalizes to the case of vanishing higher order derivatives.

The Schwarz-Pick lemma for slice regular functions.

BISI, Cinzia;
2012

Abstract

The celebrated Schwarz-Pick lemma for the complex unit disk is the basis for the study of hyperbolic geometry in one and in several complex variables. In the present paper, we turn our attention to the quaternionic unit ball $\B$. We prove a version of the Schwarz-Pick lemma for self-maps of $\B$ that are slice regular, according to the definition of Gentili and Struppa. The lemma has interesting applications in the fixed-point case, and it generalizes to the case of vanishing higher order derivatives.
2012
Bisi, Cinzia; C., Stoppato
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1694108
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact