Small codimensional embedded manifolds defined by equations of small degree are Fano and covered by lines. They are complete intersections exactly when the variety of lines through a general point is so and has the right codimension. This allows us to prove the Hartshorne Conjecture for manifolds defined by quadratic equations and to obtain the list of such Hartshorne manifolds. © 2013 by The Johns Hopkins University Press.

Manifolds covered by lines and the Hartshorne Conjecture for quadratic manifolds

IONESCU, Paltin;
2013

Abstract

Small codimensional embedded manifolds defined by equations of small degree are Fano and covered by lines. They are complete intersections exactly when the variety of lines through a general point is so and has the right codimension. This allows us to prove the Hartshorne Conjecture for manifolds defined by quadratic equations and to obtain the list of such Hartshorne manifolds. © 2013 by The Johns Hopkins University Press.
2013
Ionescu, Paltin; F., Russo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1682762
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact