The space-space component of the photon polarization operator is calculated in zero frequency limit for a medium with Bose-Einstein condensate (BEC) of electrically charged particles. It is found that the polarization operator tends to a finite value at vanishing photon 3-momentum, as it happens in superconducting media. It means that magnetic fields are exponentially screened in such a medium analogously to the Debye screening of electric charges. At non-zero temperature the screened magnetic field oscillates and contains a contribution which drops only as a power of distance. This phenomenon is unknown for superconductors, even in BEC phase and can be potentially observable. © 2011 Elsevier B.V. All rights reserved.
Screening of magnetic fields by charged Bose condensate
DOLGOV, Alexander;LEPIDI, Angela
2011
Abstract
The space-space component of the photon polarization operator is calculated in zero frequency limit for a medium with Bose-Einstein condensate (BEC) of electrically charged particles. It is found that the polarization operator tends to a finite value at vanishing photon 3-momentum, as it happens in superconducting media. It means that magnetic fields are exponentially screened in such a medium analogously to the Debye screening of electric charges. At non-zero temperature the screened magnetic field oscillates and contains a contribution which drops only as a power of distance. This phenomenon is unknown for superconductors, even in BEC phase and can be potentially observable. © 2011 Elsevier B.V. All rights reserved.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.