Bogs are globally important sinks of atmospheric carbon (C) due to the accumulation of partially decomposed litter that forms peat. Because bogs receive their nutrients from the atmosphere, the world-wide increase of nitrogen (N) deposition is expected to affect litter decomposition and, ultimately, the rate of C accumulation. However, the mechanism of such biogeochemical alteration remains unclear and quantification of the effect of N addition on litter accumulation has yet to be done. Here we show that seven years of N addition to a bog decreased the C:N ratio, increased the bacterial biomass and stimulated the activity of hydrolytic and oxidative enzymes in surface peat. Furthermore, N addition modified nutrient limitation of microbes during litter decomposition so that phosphorus became a primary limiting nutrient. Alteration of N release from decomposing litter affected bog water chemistry and the competitive balance between peat-forming mosses and vascular plants. We estimate that deposition of about 4 g N m-2 yr-1 will cause a mean annual reduction of fresh litter C accumulation of about 40 g m-2 primarily as a consequence of decreased litter production from peat-forming mosses. Our findings show that N deposition interacts with both above and below ground components of biodiversity to threaten the ability of bogs to act as C sinks, which may offset the positive effects of N on C accumulation seen in other ecosystems.

High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation

BRAGAZZA, Luca;BRANCALEONI, Lisa;GERDOL, Renato;
2012

Abstract

Bogs are globally important sinks of atmospheric carbon (C) due to the accumulation of partially decomposed litter that forms peat. Because bogs receive their nutrients from the atmosphere, the world-wide increase of nitrogen (N) deposition is expected to affect litter decomposition and, ultimately, the rate of C accumulation. However, the mechanism of such biogeochemical alteration remains unclear and quantification of the effect of N addition on litter accumulation has yet to be done. Here we show that seven years of N addition to a bog decreased the C:N ratio, increased the bacterial biomass and stimulated the activity of hydrolytic and oxidative enzymes in surface peat. Furthermore, N addition modified nutrient limitation of microbes during litter decomposition so that phosphorus became a primary limiting nutrient. Alteration of N release from decomposing litter affected bog water chemistry and the competitive balance between peat-forming mosses and vascular plants. We estimate that deposition of about 4 g N m-2 yr-1 will cause a mean annual reduction of fresh litter C accumulation of about 40 g m-2 primarily as a consequence of decreased litter production from peat-forming mosses. Our findings show that N deposition interacts with both above and below ground components of biodiversity to threaten the ability of bogs to act as C sinks, which may offset the positive effects of N on C accumulation seen in other ecosystems.
2012
Bragazza, Luca; Alexandre Buttler, A.; Habermacher, J.; Brancaleoni, Lisa; Gerdol, Renato; Fritze, H.; Hanajík, P.; Laiho, R.; Johnson, D....espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1539390
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 130
  • ???jsp.display-item.citation.isi??? 112
social impact