An enzymatic strategy for the preparation of optically pure α-alkyl-α,β-dihydroxyketones is reported. Homo- and cross-coupling reactions of α-diketones catalyzed by acetylacetoin synthase (AAS) produce a set of α-alkyl-α-hydroxy-β-diketones (30-60%, ee 67-90%), which in turn are reduced regio-, diastereo-, and enantioselectively to the corresponding chiral α-alkyl-α,β- dihydroxyketones (60-70%, ee >95%) using acetylacetoin reductase (AAR) as catalyst. Both enzymes are obtained from Bacillus licheniformis and used in a crude form. The relative syn stereochemistry of the enantiopure α,β-dihydroxy products is assigned by NOE experiments, whereas their absolute configuration is determined by conversion of the selected 3,4-dihydroxy-3-methyl-pentan-2-one to the natural product (+)-citreodiol. © The Royal Society of Chemistry 2011.
Enzymatic diastereo- and enantioselective synthesis of alpha-alkyl-alpha,beta-dihydroxyketones
GIOVANNINI, Pier Paolo;FANTIN, Giancarlo;MASSI, Alessandro;VENTURI, Valentina;PEDRINI, Paola
2011
Abstract
An enzymatic strategy for the preparation of optically pure α-alkyl-α,β-dihydroxyketones is reported. Homo- and cross-coupling reactions of α-diketones catalyzed by acetylacetoin synthase (AAS) produce a set of α-alkyl-α-hydroxy-β-diketones (30-60%, ee 67-90%), which in turn are reduced regio-, diastereo-, and enantioselectively to the corresponding chiral α-alkyl-α,β- dihydroxyketones (60-70%, ee >95%) using acetylacetoin reductase (AAR) as catalyst. Both enzymes are obtained from Bacillus licheniformis and used in a crude form. The relative syn stereochemistry of the enantiopure α,β-dihydroxy products is assigned by NOE experiments, whereas their absolute configuration is determined by conversion of the selected 3,4-dihydroxy-3-methyl-pentan-2-one to the natural product (+)-citreodiol. © The Royal Society of Chemistry 2011.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.