We prove that, for the general curve of genus g, the 2nd Gaussian map is injective if g <= 17 and surjective if g >= 18. The proof relies on the study of the limit of the 2nd Gaussian map when the general curve of genus g degenerates to a general stable binary curve, i.e. the union of two rational curves meeting at g+1 points.

The rank of the second Gaussian map for general curves

CALABRI, Alberto;
2011

Abstract

We prove that, for the general curve of genus g, the 2nd Gaussian map is injective if g <= 17 and surjective if g >= 18. The proof relies on the study of the limit of the 2nd Gaussian map when the general curve of genus g degenerates to a general stable binary curve, i.e. the union of two rational curves meeting at g+1 points.
2011
Calabri, Alberto; C., Ciliberto; R., Miranda
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1407425
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact