A remarkable subclass of linearly ordered semigroups, called interval semigroups, defined on connected and compact sets is studied. Particularly, a generalized notion of o-isomorphism, called weak o-embedding, of such semigroups into the real numbers with standard operations is given. A representation theorem for the weak o-embedding of topological Archimedean interval semigroups with no zero divisors is provided. Such characterization is shown to be the best one possible.

Characterization of non-nilpotent topological interval semigroups

GHISELLI RICCI, Roberto
2009

Abstract

A remarkable subclass of linearly ordered semigroups, called interval semigroups, defined on connected and compact sets is studied. Particularly, a generalized notion of o-isomorphism, called weak o-embedding, of such semigroups into the real numbers with standard operations is given. A representation theorem for the weak o-embedding of topological Archimedean interval semigroups with no zero divisors is provided. Such characterization is shown to be the best one possible.
2009
GHISELLI RICCI, Roberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1402487
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact