We deal with a reducible projective surface X with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the ω-genus of X, i.e. the dimension of the vector space of global sections of the dualizing sheaf ω of X. Then we prove that, when X is smoothable, i.e. when X is the central fibre of a flat family parametrized by a disc, with smooth general fibre, then the ω-genus of the fibres of the family is constant.

On the genus of reducible surfaces and degenerations of surfaces

CALABRI, Alberto;
2007

Abstract

We deal with a reducible projective surface X with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the ω-genus of X, i.e. the dimension of the vector space of global sections of the dualizing sheaf ω of X. Then we prove that, when X is smoothable, i.e. when X is the central fibre of a flat family parametrized by a disc, with smooth general fibre, then the ω-genus of the fibres of the family is constant.
2007
Calabri, Alberto; C., Ciliberto; F., Flamini; R., Miranda
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1401230
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact