The aim of this paper is to study the isoperimetric problem with fixed volume inside convex sets and other related geometric variational problems in the Gauss space, in both the finite and infinite dimensional case. We first study the finite dimensional case, proving the existence of a maximal Cheeger set which is convex inside any bounded convex set. We also prove the uniqueness and convexity of solutions of the isoperimetric problem with fixed volume inside any convex set. Then we extend these results in the context of the abstract Wiener space, and for that we study the total variation denoising problem in this context.

Total variation and Cheeger sets in Gauss space

MIRANDA, Michele;
2010

Abstract

The aim of this paper is to study the isoperimetric problem with fixed volume inside convex sets and other related geometric variational problems in the Gauss space, in both the finite and infinite dimensional case. We first study the finite dimensional case, proving the existence of a maximal Cheeger set which is convex inside any bounded convex set. We also prove the uniqueness and convexity of solutions of the isoperimetric problem with fixed volume inside any convex set. Then we extend these results in the context of the abstract Wiener space, and for that we study the total variation denoising problem in this context.
2010
Caselles, V.; Miranda, Michele; Novaga, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1401186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact