This paper deals with some questions of classical solution existence and uniqueness for the problem of the steady flow of an homogeneous, incompressible, perfect, electrically conducting fluid past a dielectric and discharged obstacle in which a magnetic dipole is situated. More precisely, in the first place the non-existence of solutions of the above mentioned problem is proved for fluids of finite conductivity, if rather restrictive conditions are placed on behavior of the kinetic and magnetic fields at infinity. In the next place an existence and uniqueness theorem is established for perfectly conducting fluids. © 1979 Università degli Studi di Ferrara.

Su un caso di esistenza e su uno di esistenza e unicità della soluzione di un problema della magnetoidrodinamica stazionaria

BORRELLI, Alessandra
1979

Abstract

This paper deals with some questions of classical solution existence and uniqueness for the problem of the steady flow of an homogeneous, incompressible, perfect, electrically conducting fluid past a dielectric and discharged obstacle in which a magnetic dipole is situated. More precisely, in the first place the non-existence of solutions of the above mentioned problem is proved for fluids of finite conductivity, if rather restrictive conditions are placed on behavior of the kinetic and magnetic fields at infinity. In the next place an existence and uniqueness theorem is established for perfectly conducting fluids. © 1979 Università degli Studi di Ferrara.
1979
Borrelli, Alessandra
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1399004
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact