In this paper the authors formulate a boundary-initial value problem for a linear elastic porous body saturated with an inviscid fluid and establish a continuous dependence theorem (Theorem 2) and two uniqueness theorems (Theorems 3, 4) for a particular class of such continua. Theorems 2, 3 are proved without hypotheses on the sign of the constants and, if the domain is unbounded, under mild assumptions on the spatial asymptotic behaviour of the field variables. Theorem 4 holds for body-forces not equal to zero and, if the domain is unbounded, without restrictions upon the behaviour of the unknown fields at infinity, but under suitable conditions on the sign of the constants. © 1984, University College London. All rights reserved.

Continuous dependence and uniqueness theorems in Boundary-value problems for a class of porous bodies occupying bounded or unbounded domains

BORRELLI, Alessandra;PATRIA, Maria Cristina
1984

Abstract

In this paper the authors formulate a boundary-initial value problem for a linear elastic porous body saturated with an inviscid fluid and establish a continuous dependence theorem (Theorem 2) and two uniqueness theorems (Theorems 3, 4) for a particular class of such continua. Theorems 2, 3 are proved without hypotheses on the sign of the constants and, if the domain is unbounded, under mild assumptions on the spatial asymptotic behaviour of the field variables. Theorem 4 holds for body-forces not equal to zero and, if the domain is unbounded, without restrictions upon the behaviour of the unknown fields at infinity, but under suitable conditions on the sign of the constants. © 1984, University College London. All rights reserved.
1984
Borrelli, Alessandra; Patria, Maria Cristina
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1398477
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact