We propose a numerical approximation to kinetic equations of Boltzmann type based on the splitting in time between the transport and the collision phases. By means of the representation of the solution to the relaxation part as an arithmetic mean of the convolution iterates of a quadratic positive operator, we construct a stable discretization valid for arbitrary values of the mean free path. Comparison of the present approximation with previous ones is made for Broadwell discrete velocity model.

Wild's sums and numerical approximation of nonlinear kinetic equations

GABETTA, Ester;PARESCHI, Lorenzo;TOSCANI, Giuseppe
1996

Abstract

We propose a numerical approximation to kinetic equations of Boltzmann type based on the splitting in time between the transport and the collision phases. By means of the representation of the solution to the relaxation part as an arithmetic mean of the convolution iterates of a quadratic positive operator, we construct a stable discretization valid for arbitrary values of the mean free path. Comparison of the present approximation with previous ones is made for Broadwell discrete velocity model.
1996
Gabetta, Ester; Pareschi, Lorenzo; Toscani, Giuseppe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1397056
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact