The management of business processes has recently received a lot of attention from companies, since it can support efficiency improvement. We present an approach for mining process models that first induces a model in the SCIFF logical language and then translates the model into Markov logic, a language belonging to the field of statistical relational learning. Markov logic attaches weights to first-order contraints, in order to obtain a final probabilistic classification of process traces better than the purely logical one. The data used for learning and testing belong to a real database of university students' careers.

Mining Probabilistic Declarative Process Models

BELLODI, Elena;RIGUZZI, Fabrizio;LAMMA, Evelina
2009

Abstract

The management of business processes has recently received a lot of attention from companies, since it can support efficiency improvement. We present an approach for mining process models that first induces a model in the SCIFF logical language and then translates the model into Markov logic, a language belonging to the field of statistical relational learning. Markov logic attaches weights to first-order contraints, in order to obtain a final probabilistic classification of process traces better than the purely logical one. The data used for learning and testing belong to a real database of university students' careers.
2009
Process Mining; Learning from Interpretations; Business Processes; Probabilistic Relational Languages
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1394164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact