Neuropeptide S (NPS) and its receptor NPSR comprise a recently deorphaned G-protein-coupled receptor system. There is a body of evidence suggesting the involvement of NPS in wakefulness, anxiety, locomotor activity and oxidative stress damage. Considering that mood stabilizers block the stimulatory effect of psychostimulants in rodents, the present study aimed to investigate the effects of the pretreatment with lithium and valproate on the hyperlocomotion evoked by NPS. Another relevant action induced by lithium and valproate is the neuroprotection against oxidative stress. Thus, aiming to get further information about the mechanisms of action of NPS, herein we evaluated the effects of NPS, lithium and valproate, and the combination of them on oxidative stress damage. Behavioral studies revealed that the pretreatment with lithium (100 mg/kg, i.p.) and valproate (200 mg/kg, i.p.) prevented hyperlocomotion evoked by NPS 0.1 nmol. Importantly, the dose of valproate used in this study reduced mouse locomotion, although it did not reach the statistical significance. Biochemical analyses showed that lithium attenuated thiobarbituric reactive species (TBARS) formation in the striatum, cerebellum and hippocampus. NPS per se reduced TBARS levels only in the hippocampus. Valproate did not significantly affect TBARS levels in the brain. However, the combination of mood stabilizers and NPS blocked, instead of potentiate, the neuroprotective effects of each one. No relevant alterations were observed in carbonylated proteins after all treatments. Altogether, the present findings suggested that mainly the mood stabilizer lithium evoked antagonistic effects on the mediation of hyperlocomotion and protection against lipid peroxidation induced by NPS.

Lithium attenuates behavioral and biochemical effects of neuropeptide S in mice.

CALO', Girolamo;GUERRINI, Remo;
2009

Abstract

Neuropeptide S (NPS) and its receptor NPSR comprise a recently deorphaned G-protein-coupled receptor system. There is a body of evidence suggesting the involvement of NPS in wakefulness, anxiety, locomotor activity and oxidative stress damage. Considering that mood stabilizers block the stimulatory effect of psychostimulants in rodents, the present study aimed to investigate the effects of the pretreatment with lithium and valproate on the hyperlocomotion evoked by NPS. Another relevant action induced by lithium and valproate is the neuroprotection against oxidative stress. Thus, aiming to get further information about the mechanisms of action of NPS, herein we evaluated the effects of NPS, lithium and valproate, and the combination of them on oxidative stress damage. Behavioral studies revealed that the pretreatment with lithium (100 mg/kg, i.p.) and valproate (200 mg/kg, i.p.) prevented hyperlocomotion evoked by NPS 0.1 nmol. Importantly, the dose of valproate used in this study reduced mouse locomotion, although it did not reach the statistical significance. Biochemical analyses showed that lithium attenuated thiobarbituric reactive species (TBARS) formation in the striatum, cerebellum and hippocampus. NPS per se reduced TBARS levels only in the hippocampus. Valproate did not significantly affect TBARS levels in the brain. However, the combination of mood stabilizers and NPS blocked, instead of potentiate, the neuroprotective effects of each one. No relevant alterations were observed in carbonylated proteins after all treatments. Altogether, the present findings suggested that mainly the mood stabilizer lithium evoked antagonistic effects on the mediation of hyperlocomotion and protection against lipid peroxidation induced by NPS.
2009
Castro, Aa; Casagrande, Ts; Moretti, M; Costantino, L; Petronilho, F; Guerra, Gcb; Calo', Girolamo; Guerrini, Remo; Dal Pizzol, F; Quevedo, J; Gavioli, Ec
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1378296
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact