The hyperfine field and the magnetic anisotropy of a Fe layer as a function of thickness have been investigated in several Ni/57Fex/Ni(1 1 1) trilayers with relatively thick Ni layers by Mössbauer spectroscopy. For Fe layers with thickness below 16 Å, the Mössbauer spectra show always the presence of two ferromagnetic phases with high-spin state. In the range between 6 and 8 Å, also a ferromagnetic phase with low-spin state and a paramagnetic phase have been found. The evolution of the mean hyperfine field of the 57Fe nuclei is used to study the Fe growth. A structural FCCBCC phase transition is found to begin with an iron thickness of 8 Å. The easy direction of the magnetization is found out-of-plane for Fe interlayer with FCC structure, and perfectly in plane for Fe interlayer with BCC structure. © 2002 Elsevier Science B.V. All rights reserved.
Study of magnetic anisotropy and magnetism of Fe in Ni/Fe/Ni(111) trilayers by Mössbauer spectroscopy
FRATUCELLO, Giovanni;VAVASSORI, Paolo
2003
Abstract
The hyperfine field and the magnetic anisotropy of a Fe layer as a function of thickness have been investigated in several Ni/57Fex/Ni(1 1 1) trilayers with relatively thick Ni layers by Mössbauer spectroscopy. For Fe layers with thickness below 16 Å, the Mössbauer spectra show always the presence of two ferromagnetic phases with high-spin state. In the range between 6 and 8 Å, also a ferromagnetic phase with low-spin state and a paramagnetic phase have been found. The evolution of the mean hyperfine field of the 57Fe nuclei is used to study the Fe growth. A structural FCCBCC phase transition is found to begin with an iron thickness of 8 Å. The easy direction of the magnetization is found out-of-plane for Fe interlayer with FCC structure, and perfectly in plane for Fe interlayer with BCC structure. © 2002 Elsevier Science B.V. All rights reserved.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


