The photolysis of a benzene solution of [Tp(Me2)IrH(2)(COE)], 1 (Tp(Me2) = hydrotris(3,5-dimethylpyrazolyl)borate, COE = Z-cyclooctene), in the presence of P(OMe)(3), gives the stable novel complex [Tp(Me2)IrH(C6H5)(P(OMe)(3))], 3a. The photochemical syntheses of [Tp(Me2)IrH(2)(P(OMe)(3))], from 1 and P(OMe)(3) in diethyl ether, and [Tp(Me2)-IrH2(CH2=CHCOO(t)Bu)], from 1 in tert-butyl acrylate, are also reported. The above reactions and several experiments using C6D6 and P(OCD3)(3) show that, in all cases, the primary photoproduct is the 16-electron, five-coordinate iridium(III) intermediate {Tp(Me2)IrH(2)}, 6a, produced by loss of COE from 1. The above experiments also allow the postulation of a mechanistic pathway for the formation of 3a which involves the oxidative addition of an aromatic C-H bond by 6a. Furthermore, the photochemical reaction of 1 in the presence of P(OCD3)(3) shows that, under the reaction conditions used, oxidative addition of C-H bonds of P(OMe)(3) and of coordinated Tp(Me2)-ligands, presumably, to the intermediates 6a and {Tp(Me2)IrH(C6H5)}, also occurs. Thus, coordinatively unsaturated iridium(III) species readily activate C-H bonds.
Photochemistry of Dihydrido(hydrotris(3,5- dimethylpyrazolyl)borato)(Z-cyclooctene)iridium. Synthetic Intermediates and Mechanism of the Photochemical Formation of Hydridophenyl(hydrotris(3,5-dimethylpyrazolyl)borato)(trimethyl phosphite)iridium
POLO, Eleonora;SOSTERO, Silvana;
1996
Abstract
The photolysis of a benzene solution of [Tp(Me2)IrH(2)(COE)], 1 (Tp(Me2) = hydrotris(3,5-dimethylpyrazolyl)borate, COE = Z-cyclooctene), in the presence of P(OMe)(3), gives the stable novel complex [Tp(Me2)IrH(C6H5)(P(OMe)(3))], 3a. The photochemical syntheses of [Tp(Me2)IrH(2)(P(OMe)(3))], from 1 and P(OMe)(3) in diethyl ether, and [Tp(Me2)-IrH2(CH2=CHCOO(t)Bu)], from 1 in tert-butyl acrylate, are also reported. The above reactions and several experiments using C6D6 and P(OCD3)(3) show that, in all cases, the primary photoproduct is the 16-electron, five-coordinate iridium(III) intermediate {Tp(Me2)IrH(2)}, 6a, produced by loss of COE from 1. The above experiments also allow the postulation of a mechanistic pathway for the formation of 3a which involves the oxidative addition of an aromatic C-H bond by 6a. Furthermore, the photochemical reaction of 1 in the presence of P(OCD3)(3) shows that, under the reaction conditions used, oxidative addition of C-H bonds of P(OMe)(3) and of coordinated Tp(Me2)-ligands, presumably, to the intermediates 6a and {Tp(Me2)IrH(C6H5)}, also occurs. Thus, coordinatively unsaturated iridium(III) species readily activate C-H bonds.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.