The Belvedere Spinello salt mine is located in the Catanzaro Province of Calabria in Southern Italy. An extensive mining program has caused the development of Underground cavities filled with brine and the migration of this brine has been of great environmental concern to the mine owners. This paper presents the results of a multidimensional interpretation of a two-phase resistivity and magnetotelluric (MT) survey that was performed in an attempt to determine the complex conductivity structure of the mine area and to gain information on brine development and migration pathways. Key resistivity soundings were interpreted using a 2.5D algorithm based on the Polozhii decomposition method. The MT data were interpreted using a 2D finite-element code. A conductivity model was developed, integrating available geological and drill-hole information. The interpretation of the MT data, collected five years after the acquisition of the resistivity data, shows a conductive feature of depth that is not resolved in the resistivity interpretation. This feature has been interpreted as a thick brine zone that has developed as a result of mining during the interval between the resistivity and the MT measurements.
2D MODELING OF RESISTIVITY AND MAGNETOTELLURIC DATA FROM THE BELVEDERE-SPINELLO SALT MINE, ITALY
SANTARATO, Giovanni;
1995
Abstract
The Belvedere Spinello salt mine is located in the Catanzaro Province of Calabria in Southern Italy. An extensive mining program has caused the development of Underground cavities filled with brine and the migration of this brine has been of great environmental concern to the mine owners. This paper presents the results of a multidimensional interpretation of a two-phase resistivity and magnetotelluric (MT) survey that was performed in an attempt to determine the complex conductivity structure of the mine area and to gain information on brine development and migration pathways. Key resistivity soundings were interpreted using a 2.5D algorithm based on the Polozhii decomposition method. The MT data were interpreted using a 2D finite-element code. A conductivity model was developed, integrating available geological and drill-hole information. The interpretation of the MT data, collected five years after the acquisition of the resistivity data, shows a conductive feature of depth that is not resolved in the resistivity interpretation. This feature has been interpreted as a thick brine zone that has developed as a result of mining during the interval between the resistivity and the MT measurements.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.