Nociceptin/orphanin FQ modulates various biological functions at central and peripheral levels by selectively activating a G-protein coupled receptor named N/OFQ peptide (NOP) receptor. For extending our knowledge on the biological roles of the N/OFQ-NOP receptor system the identification of selective NOP ligands, especially antagonists, is mandatory. [Nphe1, Arg14, Lys15] N/OFQ-NH2 (UFP-101) is a novel NOP ligand that was designed by combining, in the same molecule, the [Nphe1] chemical modification which eliminates efficacy and the [Arg14, Lys15] substitution which increases ligand potency and duration of action in vivo. In the present article, we summarize the pharmacological features of UFP-101 as determined in a series of in vitro and in vivo assays. Moreover, some biological actions and possible therapeutic indications of NOP ligands are discussed on the basis of results obtained with UFP-101. Data obtained with this compound were compared with those generated using other NOP antagonists, especially J-113397 and [Nphe1]N/OFQ(1-13)-NH2, receptor or peptide knockout mice and other pharmacological tools useful for blocking N/OFQ - NOP receptor signaling. The analysis of the available data demonstrates that UFP-101 is a useful pharmacological tool for the investigation of the central and peripheral biological functions regulated by the N/OFQ-NOP receptor system and for defining the therapeutic potential of NOP receptor ligands.
UFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor
CALO', Girolamo;GUERRINI, Remo;RIZZI, Anna;SALVADORI, Severo;REGOLI, Domenico
2005
Abstract
Nociceptin/orphanin FQ modulates various biological functions at central and peripheral levels by selectively activating a G-protein coupled receptor named N/OFQ peptide (NOP) receptor. For extending our knowledge on the biological roles of the N/OFQ-NOP receptor system the identification of selective NOP ligands, especially antagonists, is mandatory. [Nphe1, Arg14, Lys15] N/OFQ-NH2 (UFP-101) is a novel NOP ligand that was designed by combining, in the same molecule, the [Nphe1] chemical modification which eliminates efficacy and the [Arg14, Lys15] substitution which increases ligand potency and duration of action in vivo. In the present article, we summarize the pharmacological features of UFP-101 as determined in a series of in vitro and in vivo assays. Moreover, some biological actions and possible therapeutic indications of NOP ligands are discussed on the basis of results obtained with UFP-101. Data obtained with this compound were compared with those generated using other NOP antagonists, especially J-113397 and [Nphe1]N/OFQ(1-13)-NH2, receptor or peptide knockout mice and other pharmacological tools useful for blocking N/OFQ - NOP receptor signaling. The analysis of the available data demonstrates that UFP-101 is a useful pharmacological tool for the investigation of the central and peripheral biological functions regulated by the N/OFQ-NOP receptor system and for defining the therapeutic potential of NOP receptor ligands.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.