We consider the Cauchy problem for a quasilinear weakly hyperbolic operator with coefficients having the first time derivative with singular behavior of the type t^{−q}, q > 1, as t → 0. We show that for t ≤ T_0 , T_0 sufficiently small, given Cauchy data in a Gevrey class there exists a unique solution u in Gevrey classes of order σ < (qr)/(qr−1) where r denotes the largest multiplicity of the characteristic roots.

The Cauchy Problem for Quasilinear Hyperbolic Equations with Non-Absolutely Continuous Coefficients in the Time Variable

ASCANELLI, Alessia
2005

Abstract

We consider the Cauchy problem for a quasilinear weakly hyperbolic operator with coefficients having the first time derivative with singular behavior of the type t^{−q}, q > 1, as t → 0. We show that for t ≤ T_0 , T_0 sufficiently small, given Cauchy data in a Gevrey class there exists a unique solution u in Gevrey classes of order σ < (qr)/(qr−1) where r denotes the largest multiplicity of the characteristic roots.
2005
Ascanelli, Alessia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1208889
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact