The stromal interaction molecular 1 gene (STIM1) encodes a type I trans-membrane protein of unknown function, which induces growth arrest and degeneration of the human tumor cell lines G401 and RD but not HBL100 and CaLu-6, suggesting a role in the pathogenesis of rhabdomyosarcomas and rhabdoid tumors. Here, we describe the STIM1 genomic organization including the identification of the promoter region. The gene consists of 12 exons that span a region larger than 250 kb between the genes RRM1 and NUP98. Nucleotide sequences of all exon-intron boundaries were determined and oligonucleotide primers for the amplification of individual exons were designed. The promoter region was identified within a 1.8-kb SacI fragment at the 5' end of the gene. In vitro CpG methylation of the promoter region indicated that transcription can be downregulated by this mechanism. The genetic tools developed in the present work will help to determine whether pathogenetic mechanisms that associate STIM1 with tumorigenesis involve mutations in coding sequences and/or promoter, and whether methylation could determine STIM1 transcriptional down-regulation in tumor samples.

Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD

SABBIONI, Silvia;VERONESE, Angelo;BARBANTI BRODANO, Giuseppe;CROCE, Carlo Maria;NEGRINI, Massimo
1999

Abstract

The stromal interaction molecular 1 gene (STIM1) encodes a type I trans-membrane protein of unknown function, which induces growth arrest and degeneration of the human tumor cell lines G401 and RD but not HBL100 and CaLu-6, suggesting a role in the pathogenesis of rhabdomyosarcomas and rhabdoid tumors. Here, we describe the STIM1 genomic organization including the identification of the promoter region. The gene consists of 12 exons that span a region larger than 250 kb between the genes RRM1 and NUP98. Nucleotide sequences of all exon-intron boundaries were determined and oligonucleotide primers for the amplification of individual exons were designed. The promoter region was identified within a 1.8-kb SacI fragment at the 5' end of the gene. In vitro CpG methylation of the promoter region indicated that transcription can be downregulated by this mechanism. The genetic tools developed in the present work will help to determine whether pathogenetic mechanisms that associate STIM1 with tumorigenesis involve mutations in coding sequences and/or promoter, and whether methylation could determine STIM1 transcriptional down-regulation in tumor samples.
1999
Sabbioni, Silvia; Veronese, Angelo; Trubia, M; Taramelli, R; BARBANTI BRODANO, Giuseppe; Croce, Carlo Maria; Negrini, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1208532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 42
social impact