A class of numerical schemes for nonlinear kinetic equations of Boltzmann type is described. Following Wild's approach, the solution is represented as a power series with parameter depending exponentially on the Knudsen number. This permits us to derive accurate and stable time discretizations for all ranges of the mean free path. These schemes preserve the main physical properties: positivity, conservation of mass, momentum, and energy. Moreover, for some particular models, the entropy property is also shown to hold.

Relaxation schemes for nonlinear kinetic equations

PARESCHI, Lorenzo;
1997

Abstract

A class of numerical schemes for nonlinear kinetic equations of Boltzmann type is described. Following Wild's approach, the solution is represented as a power series with parameter depending exponentially on the Knudsen number. This permits us to derive accurate and stable time discretizations for all ranges of the mean free path. These schemes preserve the main physical properties: positivity, conservation of mass, momentum, and energy. Moreover, for some particular models, the entropy property is also shown to hold.
1997
Gabetta, E; Pareschi, Lorenzo; Toscani, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1207323
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 85
social impact