A new family of Monte Carlo schemes has been recently introduced for the numerical solution of the Boltzmann equation of rarefied gas dynamics[14]. After a splitting of the equation the time discretization of the collision step is obtained from the Wild sum expansion of the solution by replacing high order terms in the expansion with the equilibrium Maxwellian distribution. The corresponding time relaxed Monte Carlo (TRMC) schemes allow the use of time steps larger than those required by direct simulation Monte Carlo (DSMC) and guarantee consistency in the fluid-limit with the compressible Euler equations. Conservation of mass, momentum, and energy are also preserved by the schemes. Applications to a two-dimensional gas dynamic flow around an obstacle are presented which show the improvement in terms of computational efficiency of TRMC schemes over standard DSMC for regimes close to the fluid-limit.

Numerical solution of the Boltzmann equation by time relaxed Monte Carlo (TRMC) methods

PARESCHI, Lorenzo;TRAZZI, Stefano
2005

Abstract

A new family of Monte Carlo schemes has been recently introduced for the numerical solution of the Boltzmann equation of rarefied gas dynamics[14]. After a splitting of the equation the time discretization of the collision step is obtained from the Wild sum expansion of the solution by replacing high order terms in the expansion with the equilibrium Maxwellian distribution. The corresponding time relaxed Monte Carlo (TRMC) schemes allow the use of time steps larger than those required by direct simulation Monte Carlo (DSMC) and guarantee consistency in the fluid-limit with the compressible Euler equations. Conservation of mass, momentum, and energy are also preserved by the schemes. Applications to a two-dimensional gas dynamic flow around an obstacle are presented which show the improvement in terms of computational efficiency of TRMC schemes over standard DSMC for regimes close to the fluid-limit.
2005
Pareschi, Lorenzo; Trazzi, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1207296
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact