The replication-incompetent HSV-1-based vectors are herpesviruses in which genes that are 'essential' for viral replication have been either mutated or deleted. These deletions have substantially reduced their cytotoxicity by preventing early and late viral gene expression and, together with other deletions involving 'nonessential' genes, have also created space to introduce distinct and independently regulated expression cassettes for different transgenes. Therapeutic effects in gene therapy applications requiring simultaneous and synergic expression of multiple gene products are easily achievable with these vectors. A number of different HSV-1-based nonreplicative vectors for specific gene therapy applications have been developed so far. They have been tested in different gene therapy animal models of neuropathies (Parkinson's disease, chronic pain, spinal cord injury pain) and lysosomal storage disorders. Many replication-incompetent HSV-1-based vectors have also been used either as potential anti-herpes vaccines, as well as vaccine vectors for other pathogens in murine and simian models. Anticancer gene therapy approaches have also been successfully set up; gene therapy to other targets by using these vectors is feasible.
Development and application of replication-incompetent HSV-1-based vectors
BERTO, Elena;BOZAC, Aleksandra;MARCONI, Peggy Carla Raffaella
2005
Abstract
The replication-incompetent HSV-1-based vectors are herpesviruses in which genes that are 'essential' for viral replication have been either mutated or deleted. These deletions have substantially reduced their cytotoxicity by preventing early and late viral gene expression and, together with other deletions involving 'nonessential' genes, have also created space to introduce distinct and independently regulated expression cassettes for different transgenes. Therapeutic effects in gene therapy applications requiring simultaneous and synergic expression of multiple gene products are easily achievable with these vectors. A number of different HSV-1-based nonreplicative vectors for specific gene therapy applications have been developed so far. They have been tested in different gene therapy animal models of neuropathies (Parkinson's disease, chronic pain, spinal cord injury pain) and lysosomal storage disorders. Many replication-incompetent HSV-1-based vectors have also been used either as potential anti-herpes vaccines, as well as vaccine vectors for other pathogens in murine and simian models. Anticancer gene therapy approaches have also been successfully set up; gene therapy to other targets by using these vectors is feasible.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.